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A family of multiderivative methods with minimal phase-lag are introduced in this
paper, for the numerical solution of the Schrödinger equation. The methods are called
multiderivative since uses derivatives of order two, four or six. Numerical application
of the new obtained methods to the Schrödinger equation shows their efficiency com-
pared with other similar well known methods of the literature.
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1. Introduction

The radial Schrödinger equation has the form:

y ′′(r) = [
l(l + 1)/r2 + V (r) − k2] y(r). (1)

The above boundary value problem occurs frequently in theoretical phys-
ics and chemistry, material sciences, quantum mechanics and quantum chemistry,
electronics etc. (see for example [1–4]).

We give some definitions for (1):

• The function W(r) = l(l + 1)/r2 + V (r) is called the effective potential.
This satisfies W(r) → 0 as r → ∞

• k2 is a real number denoting the energy

• l is a given integer representing angular momentum

∗ Active Member of the European Academy of Sciences and Arts.
† Current address: Dr. T.E. Simos, 26 Menelaou Street, Amfithea-Paleon Faliron, GR-175 64

Athens, Greece.
‡ Corresponding author.

317

0259-9791/05/0400-0317/0 © 2005 Springer Science+Business Media, Inc.



318 D.P. Sakas and T.E. Simos / Multiderivative methods

• V is a given function which denotes the potential.

• The boundary conditions are:

y(0) = 0 (2)

and a second boundary condition, for large values of r, determined by
physical considerations.

The last decades a lot of research has been done on the development of
numerical methods for the numerical solution of the Schrödinger equation (see
for example [5–9] and [10–24]). The above research gave us fast and reliable
methods.

The methods for the numerical solution of the Schrödinger equation can be
divided into two main categories:

1. Methods with constant coefficients.

2. Methods with coefficients dependent on the frequency of the problem.1

In this paper we will investigate methods of the first category. More
specifically we introduce a family of explicit multiderivative methods of eighth
algebraic order with phase-lag of order twelve, fourteen, sixteen and eighteen
for the numerical solution of the radial Schrödinger equation. The methods are
called multiderivative since they include second, fourth and sixth derivative of
the function. Based on the above methods a variable step method is developed.
We apply the new obtained method to the coupled differential equations of the
Schrödinger type. The above application shows the efficiency of the new devel-
oped methods.

2. A new family of multiderivative methods

We introduce the following family of methods to integrate y ′′ = f (x) y(x):

ȳn+1 = 2 yn − yn−1 + h2 y ′′
n, (3)

ȳn,i = yn − bi h
2 (

ȳ ′′
n+1 − 2 y ′′

n + y ′′
n−1

)
and i = 1(1)3, (4)

ŷn+1 = 2 yn − yn−1 + a0 h2 ȳ ′′
n,3 + a1 h4 ȳ

(4)

n,3, (5)

ȳn,4 = yn − b4 h2 (
ŷ ′′

n+1 − 2 y ′′
n + y ′′

n−1

)
, (6)

ŷn = yn + b5 h4
(
ŷ

(4)

n+1 − 2 ȳ
(4)

n,4 + y
(4)

n−1

)
, (7)

ˆ̂yn+1 = 2 yn − yn−1 + a0 h2 ŷ ′′
n + a1 h4 ŷ(4)

n + a2 h6 ŷ(6)
n , (8)

1In the case of the one-dimensional Schrödinger equation the frequency of the problem is equal to:√
|l(l + 1)/r2 + V (r) − k2|.
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yn+1 = 2 yn − yn−1 + h2
[
c0 y ′′

n + c1

( ˆ̂y ′′
n+1 + y ′′

n−1

)]

+h4
[
c2 y(4)

n + c3

(
ˆ̂y(4)

n+1 + y
(4)

n−1

)]
, (9)

where

y ′′
n±i = fn±i yn±i ,

y
(4)
n±i = (

f ′′
n±i + f 2

n±i

)
yn±i + 2 f ′

n±i y
′
n±i ,

y
(6)
n±i =

(
f

(4)
n±i + 4 f ′′

n±i + 7 fn±i f
(2)
n±i + f 3

n±i

)
yn±i

+ (
4 f (3) + 6 fn±i f

′
n±i

)
y ′

n±i and i = −1(1)1.

We note also that:

• ȳ ′′
n+1 = fn+1 ȳn+1 where ȳn+1 is calculated from the relation (3)

• ȳ ′′
n,i = fn ȳn,i where ȳn,i is calculated from the relation (4)

• ŷ ′′
n+1 = fn+1 ŷn+1 where ŷn+1 is calculated from the relation (5)

• ŷ ′′
n = fn ŷn where ŷn is calculated from the relation (7)

• ˆ̂y ′′
n+1 = fn+1

ˆ̂yn+1 where ˆ̂yn+1 is calculated from the relation (8)

It is easy to see that in order the above method (3)–(9) to be applicable,
then approximate schemes for the first derivatives of y are needed.

In order the above method (3)–(9) to be of algebraic order eight, then the
following system of equations must hold:

1 − a0 = 0
1

12
− a1 = 0

−a2 + 1
360

1 − c0 − 2 c1 = 0

−c1 + 1
12

− c2 − 2 c3 = 0

− 1
12

c1 + 1
360

− c3 = 0

1
20160

− 1
360

c1 − 1
12

c3 = 0. (10)

We note that the above system of equations is obtained if we substitute Taylor
series expansions of yn±j , y ′′

n±j , y
(4)
n±j , j = −1, 1 and y(6)

n , into the new method
(3)–(9). After computation of the local truncation error and demanding to have
the maximum algebraic order we arrive to the above system of equations.
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The solution of the above system of equations is given by

a0 = 1, a1 = 1
12

, a2 = 1
360

, c0 = 115
126

,

c1 = 11
252

, c2 = 313
7560

, and c3 = − 13
15120

. (11)

Based on the above coefficients we can find that the local truncation error
of the above schemes (3)–(9) is given by

L.T.E(h) = − h10

76204800

(
59 y(10)

n + 3326400 b5 y(6)
n − 165 y(8)

n

)
. (12)

In order to investigate the periodic stability properties of the numerical
methods for problems of Schrödinger type, Lambert and Watson [25] have intro-
duced the scalar test equation

y ′′ = −q2 y (13)

and the interval of periodicity, where q is a constant.
Based on their theory when the symmetric two-step multiderivative method

is applied to the scalar test equation (13), we obtain the difference equation:

yn+1 − 2 B(H) yn + yn−1 = 0 (14)

and the associate characteristic equation:

z2 − 2 B(H) z + 1 = 0, (15)

where H = q h.
For our method (3)–(9) we have

B(H) := 1 − 19
21772800

H 20 b5 b3 − 19
10886400

H 18 b5 b4

+ 17
60480

H 16 b5 b4 + 17
120960

H 18 b5 b3

− 97
15120

H 14 b5 b4 − 97
30240

H 16 b5 b3

+ 11
252

H 12 b5 b4 + 11
504

H 14 b5 b3 − 13
130636800

H 22 b5 b3

− 13
65318400

H 20 b5 b4 − H 6

720
− H 2

2
+ H 4

24

− 13
32659200

H 26 b5 b3 b2 b1 − 13
32659200

H 26 b5 b4 b3 b2

+ 13
16329600

H 28 b5 b4 b3 b2 b1 − 19
5443200

H 24 b5 b3 b2 b1

− 19
5443200

H 24 b5 b4 b3 b2 + 19
2721600

H 26 b5 b4 b3 b2 b1
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+ 19
10886400

H 22 b5 b4 b3 + 13
65318400

H 24 b5 b3 b2

+ 13
65318400

H 24 b5 b4 b3 − 97
7560

H 20 b5 b4 b3 b2

+ 97
3780

H 22 b5 b4 b3 b2 b1 + 17
30240

H 22 b5 b3 b2 b1

+ 17
30240

H 22 b5 b4 b3 b2 − 17
15120

H 24 b5 b4 b3 b2 b1

+ 11
126

H 18 b5 b3 b2 b1 + 11
126

H 18 b5 b4 b3 b2

−11
63

H 20 b5 b4 b3 b2 b1 − 97
7560

H 20 b5 b3 b2 b1 + H 8

40320

+ 13 H 10

10886400
− 11

504
H 10 b5 + 97

30240
H 12 b5

− 17
120960

H 14 b5 + 19
21772800

H 16 b5 + 13
130636800

H 18 b5

− 11
252

H 16 b5 b3 b2 − 11
252

H 16 b5 b4 b3 + 97
15120

H 18 b5 b3 b2

+ 97
15120

H 18 b5 b4 b3 − 17
60480

H 20 b5 b3 b2 − 17
60480

H 20 b5 b4 b3

+ 19
10886400

H 22 b5 b3 b2. (16)

Definition 1. (see [25]) A symmetric two-step method with the characteristic
equation given by (15) is said to have an interval of periodicity

(
0, H 2

0

)
if, for

all H ∈
(

0, H 2
0

)
, the roots zi, i = 1, 2 satisfy

z1 = ei θ(H) and z2 = e−i θ(H), (17)

where θ(H) is a real function of H .

Based on the above definition it is easy for one to see that the following
theorem is hold:

Theorem 1. A method that has a characteristic equation given by (15) has a non-
empty interval of periodicity

(
0, H 2

0

)
, if for all H 2 ∈ (

0, H 2
0

)
, |B(H)| < 1.

So we have that in order the above method (3)–(9) to have a non-empty
interval of periodicity the following conditions must hold:

1 ± B(H) > 0 (18)

for all H 2 ∈ (
0, H 2

0

)
.
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Theorem 2. For all H in the interval of periodicity, we can write:

cos [θ (H)] = B(H), (19)

where H 2 ∈ (
0, H 2

0

)
.

Definition 2. For any symmetric two-step method with the characteristic equa-
tion given by (15) the phase-lag2 is equal to (see [26]):

t = H − θ(H) = H − cos−1 (B(H)) = c Hp+1 + O
(
Hp+3

)
, (20)

where c is the phase-lag constant and p is phase-lag order.

Based on the above Coleman [27] has found the following remark:

Remark 1

t = c Hp+1 + O
(
Hp+3

)
⇒ cos(H) − B(H)

= cos(H) − cos(H − t) = c Hp+2 + O
(
Hp+4

)
, (21)

where t is the phase-lag of the method.
Based on Definition 2 and Remark 1 we have that:

cos(H) − B(H) = − 19
21772800

H 20 b5 b3 − 19
10886400

H 18 b5 b4

+ 17
60480

H 16 b5 b4 + 17
120960

H 18 b5 b3

− 97
15120

H 14 b5 b4 − 97
30240

H 16 b5 b3

+ 11
252

H 12 b5 b4 + 11
504

H 14 b5 b3

− 13
130636800

H 22 b5 b3 − 13
65318400

H 20 b5 b4

− H 12

479001600
+ H 14

87178291200

− H 16

20922789888000
+ H 18

6402373705728000

− H 20

2432902008176640000
+ H 22

1124000727777607680000

2Phase-lag physically means how well the numerical method approximates the solution of the scalar
test equation y ′′ = −q2 y. If we have a method of phase-lag order p this means that |Solution

Approximate - Solution Analytical| = O
(
hp

)
.
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− 13
32659200

H 26b5b3b2b1 − 13
32659200

H 26b5b4b3b2

+ 13
16329600

H 28b5b4b3b2b1 − 19
5443200

H 24b5b3b2b1

− 19
5443200

H 24b5b4b3b2 + 19
2721600

H 26b5b4b3b2b1

+ 19
10886400

H 22b5b4b3 + 13
65318400

H 24b5b3b2

+ 13
65318400

H 24b5b4b3 − 97
7560

H 20b5b4b3b2

+ 97
3780

H 22b5b4b3b2b1 + 17
30240

H 22b5b3b2b1

+ 17
30240

H 22b5b4b3b2 − 17
15120

H 24b5b4b3b2b1

+ 11
126

H 18b5b3b2b1 + 11
126

H 18b5b4b3b2

−11
63

H 20b5b4b3b2b1 − 97
7560

H 20b5b3b2b1 + H 10

680400

− 11
504

H 10b5 + 97
30240

H 12b5 − 17
120960

H 14b5

+ 19
21772800

H 16b5 + 13
130636800

H 18b5 − 11
252

H 16b5b3b2

− 11
252

H 16b5b4b3 + 97
15120

H 18b5b3b2 + 97
15120

H 18b5b4b3

− 17
60480

H 20b5b3b2 − 17
60480

H 20b5b4b3

+ 19
10886400

H 22b5b3b2. (22)

It is easy to see that in order to have minimal phase-lag, the following equation
must hold:

1
680400

− 11
504

b5 = 0. (23)

11
252

b5 b4 − 1
479001600

+ 97
30240

b5 = 0, (24)

− 97
15120

b5 b4 + 11
504

b5 b3 + 1
87178291200

− 17
120960

b5 = 0, (25)
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17
60480

b5 b4 − 97
30240

b5 b3 − 1
20922789888000

+ 19
21772800

b5 − 11
252

b5 b3 b2 − 11
252

b5 b4 b3 = 0, (26)

− 19
10886400

b5 b4 + 17
120960

b5 b3 + 1
6402373705728000

+ 11
126

b5 b3 b2 b1 + 11
126

b5 b4 b3 b2 + 13
130636800

b5

+ 97
15120

b5 b3 b2 + 97
15120

b5 b4 b3 = 0. (27)

For the solution of the above system of equations table 1
Substituting the above values of bi, i = 1(1)5 into the above formula (22)

we find the orders of the phase-lag give in the table 1.
Substituting B(H) from (16) and bi, i = 1(1)5 from table 1 we obtain that

(18) is hold for every H 2 which belongs into the interval presented in table 1.

3. Computational implementation

As we have mentioned previously, in order the above method (3)–(9) to be
applicable we need approximate schemes for the first derivatives of y. This is due
to the following formula:

y
(4)
n±i = (

f ′′
n±i + f 2

n±i

)
yn±i + 2 f ′

n±i y
′
n±i and i = −1(1)1. (28)

y
(6)
n±i =

(
f

(4)
n±i + 4 f ′′

n±i + 7 fn±i f
(2)
n±i + f 3

n±i

)
yn±i (29)

+ (
4 f (3) + 6 fn±i f

′
n±i

)
y ′

n±i and i = −1(1)1. (30)

The general formulae of the first derivatives on the points xi, i = n − 1(1)

n + 1 are given by

Table 1
Solution of the system of equations (23)–(27). Phase-lag (PL) and interval of

periodicity (IP) of the produced methods.

b1 b2 b3 b4 b5 PL IP

0 0 0 1
14850 − 1537

21120 O
(
H 12

)
(0, 15.27)

0 0 − 9487969
634233600

1
14850 − 1537

21120 O
(
H 14

)
(0, 14.24)

0 1173468341
40077181056 − 9487969

634233600
1

14850 − 1537
21120 O

(
H 16

)
(0, 15.05)

0 1173468341
40077181056 − 9487969

634233600
1

14850 − 1537
21120 O

(
H 18

)
(0, 15.05)

279918048241817
2106610365763200

1173468341
40077181056 − 9487969

634233600
1

14850 − 1537
21120 O

(
H 20

)
(0, 13.57)
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h y ′
n+1 = a2,n+1 yn+1 + a1,n+1 yn + a0,n+1 yn−1

+h2 (
b2,n+1 y ′′

n+1 + b1,n+1 y ′′
n + b0,n+1 y ′′

n−1

)

h y ′
n = a2,n yn+1 + a1,n yn + a0,n yn−1

+h2 (
b2,n y ′′

n+1 + b1,n y ′′
n + b0,n y ′′

n−1

)

h y ′
n−1 = a2,n−1 yn+1 + a1,n−1 yn + a0,n−1 yn−1

+h2 (
b2,n−1 y ′′

n+1 + b1,n−1 y ′′
n + b0,n−1 y ′′

n−1

)
. (31)

In order the above methods to have maximal algebraic order the following
system of equations must hold:

−a2, n+1 − a0, n+1 − a1, n+1 = 0

a0, n+1 + 1 − a2, n+1 = 0

−b2, n+1 − b0, n+1 − b1, n+1 − 1
2

a2, n+1 − 1
2

a0, n+1 + 1 = 0

b0, n+1 − 1
6

a2, n+1 + 1
6

a0, n+1 − b2, n+1 + 1
2

= 0

−1
2

b0, n+1 − 1
24

a2, n+1 − 1
24

a0, n+1 − 1
2

b2, n+1 + 1
6

= 0, (32)

−a0, n − a2, n − a1, n = 0

a0, n − a2, n + 1 = 0

−1
2

a2, n − b1, n − b0, n − 1
2

a0, n − b2, n = 0

−1
6

a2, n + b0, n + 1
6

a0, n − b2, n = 0

−1
2

b0, n − 1
24

a2, n − 1
24

a0, n − 1
2

b2, n = 0, (33)

−a1, n−1 − a2, n−1 − a0, n−1 = 0

1 − a2, n−1 + a0, n−1 = 0

−1 − 1
2

a2, n−1 − 1
2

a0, n−1 − b2, n−1 − b1, n−1 − b0, n−1 = 0

1
2

+ 1
6

a0, n−1 − 1
6

a2, n−1 − b2, n−1 + b0, n−1 = 0

−1
6

− 1
24

a0, n−1 − 1
24

a2, n−1 − 1
2

b2, n−1 − 1
2

b0, n−1 = 0. (34)

The solution of the above system of equations for the case: b1,n+1 = b1,n

= b1,n−1 = 1 is given by

a2,n+1 = 1
10

, a1,n+1 = 4
5
, a0,n+1 = −9

10

b2,n+1 = 11
30

, b0,n+1 = 1
30
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a2,n = −7
10

, a1,n = 12
5

, a0,n = −17
10

b2,n = 1
60

, b0,n = 11
60

a2,n−1 = −3
2

, a1,n−1 = 4, a0,n−1 = −5
2

b2,n−1 = 1
6
, b0,n−1

−1
6

. (35)

The local truncation error of the above formulae is given by

L.T.E.n+1 = L.T.E.n = L.T.E.n−1 = − 1
45

h5 y(5)
n . (36)

For the application of the first and second layer (3) and (4) of the methods
(3)–(9) the following formula is also needed:

h y ′
n = aa1,n yn + aa0,n yn−1 + h2 (

bb1,n y ′′
n + bb0,n y ′′

n−1

)

−aa1, n − aa0, n = 0,

aa0, n + 1 = 0,

−bb1, n − bb0, n − 1
2

aa0, n = 0,

bb0, n + 1
6

aa0, n = 0. (37)

The solution of the above system of equations is given by

bb0, n = 1
6
, aa0, n = −1, bb1, n = 1

3
, aa1, n = 1. (38)

The local truncation error of the above formula is given by

L.T.E.n = − 1
24

h4 y(4)
n . (39)

3.1. Local error estimation

In the literature there are many methods for the estimation of the local
truncation error (LTE) for the integration of systems of initial-value problems
(see for example [28] and [29] and references therein).

In this paper the local error estimation technique is based on an embed-
ded pair of integration methods and on the fact that when the phase-lag order is
maximal then the approximation of the solution for the problems with an oscil-
latory or periodic solution is better.

We have the following definition
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Definition 3. We define the local phase-lag error estimate in the lower order solu-
tion yL

n+1 by the quantity

L.PL.E =| yPLH
n+1 − yPLL

n+1 |, (40)

where yPLH
n+1 is the solution obtained with higher phase-lag order method and

yPLL
n+1 is the solution obtained with lower phase-lag order method. In the present

case yPLH
n+1 is the solution obtained using the multiderivative method of phase-lag

order 2 M obtained in this paper while yPLL
n+1 is the solution obtained using the

multiderivative method of phase-lag order 2 M − 2 obtained in this paper, where
M = 7(1)10. Under the assumption that h is sufficiently small, the local phase-
lag error in yPLH

n+1 can be neglected compared with that in yPLL
n+1 .

If a local error of acc is requested and the nth step of the integration pro-
cedure is obtained using a step size equal to hn, the estimated step size for the
(n + 1)st step, which would give a local phase-lag error of acc, must be

hn+1 = hn

( acc
L.PL.E

)1/q

, (41)

where q is the phase-lag order of the method.
However, for ease of programming we have restricted all step changes to

halving and doubling. Thus, based on the procedure developed in Ref. [30], the
step control procedure which we have actually used is

If L.PL.E < acc/100, hn+1 = 2hn

If acc > L.PL.E ≥ acc/100, hn+1 = hn (42)

If L.PL.E ≥ acc, hn+1 = hn

2
and repeat the step.

We note, here, that the local phase-lag error estimate is in the lower order
solution yPLL

n+1 . However, if this error estimate is acceptable, i.e., less than acc,
we adopt the widely used procedure of performing local extrapolation. Thus,
although we are actually controlling an estimate of the local phase-lag error in
lower order solution yPLL

n+1 , it is the higher phase-lag order solution yPLH
n+1 which

we actually accept at each point.

3.2. Coupled differential equations of the Schrödinger type

There are many problems in theoretical physics and chemistry, which can be
transformed to the solution of coupled differential equations of the Schrödinger
type.
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The close-coupling differential equations of the Schrödinger type may be
written in the form

[
d2

dx2
+ k2

i − li(li + 1)

x2
− Vii

]

yij =
N∑

m=1

Vimymj (43)

for 1 � i � N and m �= i.
We have investigated the case in which all channels are open. So we have

the following boundary conditions (see for details [31]):

yij = 0 at x = 0 (44)

yij ∼ kixjli (kix)δij +
(

ki

kj

)1/2

Kijkixnli(kix), (45)

where jl(x) and nl(x) are the spherical Bessel and Neumann functions, respec-
tively. We can use the present methods to problems involving close channels.

Based on the detailed analysis developed in [31] and defining a matrix K ′

and diagonal matrices M, N by

K ′
ij =

(
ki

kj

)1/2

Kij

Mij = kixjli (kix)δij

Nij = kixnli (kix)δij

we find that the asymptotic condition (45) may be written as

y ∼ M + NK′.

One of the most popular methods for the approximate solution of the cou-
pled differential equations arising from the Schrödinger equation is the Iterative
Numerov method of Allison [31].

An important problem which can be transformed to close-coupling differ-
ential equations of the Schrödinger type is the rotational excitation of a diatomic
molecule by neutral particle impact. Denoting, as in Ref. [31], the entrance chan-
nel by the quantum numbers (j, l), the exit channels by (j ′, l′), and the total
angular momentum by J = j + l = j ′ + l′, we find that

[
d2

dx2
+ k2

j ′j − l′(l′ + 1)

x2

]
y

Jjl

j ′l′ (x)

= 2µ

–h2

∑

j ′′

∑

l′′
< j ′l′; J | V | j ′′l′′; J > y

Jjl

j ′′l′′(x), (46)
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where

kj ′j = 2µ

–h2

[

E +
–h2

2I
{j (j + 1) − j ′(j ′ + 1)}

]

. (47)

E is the kinetic energy of the incident particle in the center-of-mass system, I is
the moment of inertia of the rotator, and µ is the reduced mass of the system.

Following the analysis of [31], the potential V may be written as

V (x, k̂j ′j k̂jj ) = V0(x)P0(k̂j ′j k̂jj ) + V2(x)P2(k̂j ′j k̂jj ), (48)

and the coupling matrix element is given by

< j ′l′; J | V | j ′′l′′; J >= δj ′j ′′δl′l′′V0(x) + f2(j
′l′, j ′′l′′; J )V2(x), (49)

where the f2 coefficients can be obtained from formulas given by Berstein et al.
[32] and k̂j ′j is a unit vector parallel to the wave vector kj ′j and Pi, i = 0, 2
are Legendre polynomials (see for details [32] and [33]). The boundary condi-
tions may then be written as (see [31])

y
Jjl

j ′l′ (x) = 0 at x = 0 (50)

y
Jjl

j ′l′ (x) ∼ δjj ′δll′ exp[−i(kjjx − 1/2lπ)] −
(

ki

kj

)1/2

×SJ (j l; j ′l′) exp[i(kj ′j x − 1/2l′π)], (51)

where the scattering S matrix is related to the K matrix of (45) by the relation

S = (I + iK)(I − iK)−1. (52)

The calculation of the cross sections for rotational excitation of molecu-
lar hydrogen by impact of various heavy particles requires the existence of the
numerical method for the integration from the initial value to matching points.

In our numerical test we choose the S matrix which is calculated using the
following parameters

2µ

–h2 = 1000.0,
µ

I
= 2.351, E = 1.1,

V0(x) = 1
x12

− 2
x6

, V2(x) = 0.2283V0(x).

As is described in [31], we take J = 6 and consider excitation of the rotator
from the j = 0 state to levels up to j ′ = 2, 4 and 6 giving sets of four, nine and
sixteen coupled differential equations, respectively. Following Berstein [33] and
Allison [31] the reduction of the interval [0, ∞) to [0, x0] is obtained. The
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Table 2
RTC (real time of computation (in seconds)) and MErr (maximum absolute
error) in the calculation of |S|2 for the variable-step methods (1)–(3). acc = 10−6.

hmax is the maximum stepsize.

Method N h max RTC MErr

Iterative numerov [31] 4 0.014 3.25 1.210−3

9 0.014 23.51 5.710−2

16 0.014 99.15 6.810−1

Variable-step method of Raptis and Cash [30] 4 0.056 1.65 8.910−4

9 0.056 8.68 7.410−3

16 0.056 45.21 8.610−2

New variable-step method 4 0.056 1.40 1.510−5

9 0.056 7.35 8.010−4

16 0.056 28.15 6.310−3

wavefunctions are then vanished in this region and consequently the boundary
condition (50) may be written as

y
Jjl

j ′l′ (x0) = 0. (53)

For the numerical solution of this problem we have used (1) the well known
Iterative Numerov method of Allison [31], (2) the variable-step method of Rap-
tis and Cash [30] and (3) the new variable-step method. In table 2 we present
the real time of computation required by the methods mentioned above to cal-
culate the square of the modulus of the S matrix for sets of 4, 9 and 16 coupled
differential equations. In table 2 we also present the maximum absolute error
produced in the above computations. In table 2 N indicates the number of equa-
tions of the set of coupled differential equations.

4. Conclusions

In this paper a new family of efficient multiderivative methods for the
numerical solution of the Schrödinger type equations is introduced.

From the numerical results we have the following remarks:

• The Variable-step Method of Raptis and Cash [30] gives better results
than the Iterative Numerov Method of Allison [31].

• The new developed method is more efficient than all other methods.

All computations were carried out on a IBM PC-AT compatible 80486
using double precision arithmetic with 16 significant digits accuracy (IEEE stan-
dard).
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